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Introduction

• Move toward the setting of observational studies.

• Relax the classical randomized experiment assumption.
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Assignment Assumption

• Probabilistic assignment

• Individualistic assignment

• Unconfounded assignment

• Pr(W |X ,Y (0),Y (1)) are free from dependence on the
potential outcomes.

• In combination with individualistic assignment,

Pr(W |X ,Y (0),Y (1)) = c ·
N∏
i=1

e(Xi )
Wi (1 − e(Xi ))

1−Wi

where e(x) is propensity score.
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Why Is Unconfoundedness an Important Assumption?

• The assumption is extremely widely used.

Y obs
i = α+ τsp ·Wi + Xiβ + ϵi

• It is assumed that ϵi ⊥⊥Wi ,Xi
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Why Is Unconfoundedness an Important Assumption?

• In the potential outcome formulation, we have

Yi (0) = α+ Xiβ + ϵi

Yi (1) = Yi (0) + τsp

• Then ϵi is a function of Yi (0) and Xi given the parameters

Pr(Wi = 1|Xi ,Yi (0),Yi (1)) = Pr(Wi |ϵi ,Xi ) = Pr(Wi |Xi )
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Why Is Unconfoundedness an Important Assumption?

• By assuming unconfoundedness we can compare the particular treated
units with control units.

• If there is an alternative of unconfoundedness, it must involve looking for
a comparison which is different in terms of observed pre-treatment
variables.

• In many cases it would appear implausible.
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Balancing Scores And the Propensity Score

• Assuming individualistic assignment and unconfounded assignment,

Pr(W |X ,Y (0),Y (1)) = c ·
N∏
i=1

e(Xi )
Wi (1 − e(Xi ))

1−Wi

• A balancing score b(x) is a function of the covariates such that

Wi ⊥⊥ Xi |b(Xi )

• The probability of receiving the treatment given the covariates is free of
dependence on the covariates given the balancing score.
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Balancing Scores And the Propensity Score

Lemma
The propensity score is a balancing score.

Lemma
The propensity score is the coarsest balancing score. That is, the propensity
score is a function of every balancing score.

8



Design phase

• Prior to estimating causal effects it is important to conduct design phase
of an observational study.

• Assessing Balance - CH13, CH14
• Subsample selection using matching on the propensity score -

CH15
• Subsample selection through trimming using propensity score -

CH16
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Estimation

• Discuss five broad classes of strategies for estimation

• Model-Based imputation
• Regression estimators
• Weighting estimators that use the propensity score
• Blocking estimators that use the propensity score (CH17)
• Matching Estimators (CH18)

• Blocking and matching are relatively attractive because of the robustness
properties that stem form the combination of methods.
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Weighting Estimators that use the propensity score

• Weighting exploits the two equalties

E
[
Y obs

i ·Wi

e(Xi )

]
= Esp[Yi (1)]

E
[
Y obs

i · (1 −Wi )

1 − e(Xi )

]
= Esp[Yi (0)]
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Weighting Estimators that use the propensity score

• Horvitz and Thompson introduced estimator of ATE as

τ̂ ht =
1
N

∑
i :Wi=1

λi · Y obs
i − 1

N

∑
i :Wi=0

λi · Y obs
i

where
λi =

1
e(Xi )Wi · (1 − e(Xi ))1−Wi
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Blocking Estimators That Use the Propensity Score

• Let bj , j = 0, 1, · · · , J denote the subclass boundaries, with b0 = 0,
bJ = 1.

• Let Bi (j) be a binary indicator, equal to 1 if bj−1 < e(Xi ) < bj and zero
otherwise.
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Blocking Estimators That Use the Propensity Score

• Estimate the finite-sample average effect in subclass j by

τ̂ dif (j) =

∑
i :Bi (j)=1 Yi ·Wi∑

i :Bi (j)=1 Wi
−

∑
i :Bi (j)=1 Yi · (1 −Wi )∑

i :Bi (j)=1(1 −Wi )

• Estimate the overall finite-sample average effect of the treatment by

τ̂ strat =
J∑

j=1

N(j)

N
· τ̂ dif (j)

where N(j) =
∑N

i=1 Bi (j)
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Matching Estimator

• For a given treated unit with a particular set of values for the covariates,
one looks for a control unit with as similar a set of covariates as possible.
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Efficiency Bounds

• Define

µc(x) = Esp[Yi (0)|Xi = x ], µt(x) = Esp[Yi (1)|Xi = x ]

σ2
c (x) = Vsp[Yi (0)|Xi = x ], and σ2

t (x) = Vsp[Yi (1)|Xi = x ]

• The super-population average treatment effect defined as

τsp = Esp[Yi (0)− Yi (1)] = Esp[τsp(Xi )]

where
τsp(x) = µt(x)− µc(x) = Esp[Yi (1)− Yi (0)|Xi = x ]

• The finite-sample average effect conditional on the values of the
pre-treatment variables is defined as

τcond =
1
N

N∑
i=1

τsp(Xi )
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Efficiency Bounds

• Under unconfoundedness and probabilistic assignment, and without
additional functional form restrictions beyond smoothness, the sampling
variance bound for estimators for τsp, normalized by the sample size is

Veff
sp = Esp

[
σ2
c (Xi )

1 − e(Xi )
+

σ2
t (Xi )

e(Xi )
+ (τsp(Xi )− τsp)

2
]

• The sampling variance bound for estimators for τcond is

Veff
cond = Esp

[
σ2
c (Xi )

1 − e(Xi )
+

σ2
t (Xi )

e(Xi )

]
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